To top of page
Hamlet NLP Preprocessing with Apache Spark and Sci-Kit Learn

Hamlet NLP Preprocessing with Apache Spark and Sci-Kit Learn

By Nigel Story

Introduction

This notebook is an excercise in text preprocessing using Apache Spark's RDD API and functional programming. The goal is simple: to ingest the text of Shakespear's The Tragedy of Hamlet, Prince of Denmark and to transform it into a dataset that could be used for a bag-of-words model.

Packages

In [1]:
import findspark
findspark.init()

import pyspark
sc = pyspark.SparkContext()
In [73]:
import re
import pandas as pd

import nltk
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet, stopwords

from sklearn.feature_extraction.text import TfidfVectorizer

import functools
from functools import partial

The Raw Data

In [3]:
raw_hamlet = sc.textFile('Desktop/hamlet.txt')
raw_hamlet.take(25)
Out[3]:
['hamlet@0\t\tHAMLET',
 'hamlet@8',
 'hamlet@9',
 'hamlet@10\t\tDRAMATIS PERSONAE',
 'hamlet@29',
 'hamlet@30',
 'hamlet@31\tCLAUDIUS\tking of Denmark. (KING CLAUDIUS:)',
 'hamlet@74',
 'hamlet@75\tHAMLET\tson to the late, and nephew to the present king.',
 'hamlet@131',
 'hamlet@132\tPOLONIUS\tlord chamberlain. (LORD POLONIUS:)',
 'hamlet@176',
 'hamlet@177\tHORATIO\tfriend to Hamlet.',
 'hamlet@203',
 'hamlet@204\tLAERTES\tson to Polonius.',
 'hamlet@229',
 'hamlet@230\tLUCIANUS\tnephew to the king.',
 'hamlet@259',
 'hamlet@260',
 'hamlet@261\tVOLTIMAND\t|',
 'hamlet@273\t\t|',
 'hamlet@276\tCORNELIUS\t|',
 'hamlet@288\t\t|',
 'hamlet@291\tROSENCRANTZ\t|  courtiers.',
 'hamlet@317\t\t|']

Cleaning the Data

In [4]:
def get_line_id(line):
    line_id = line[0].replace('hamlet@', '')
    line[0] = int(line_id)
    return line
In [5]:
def no_pipes(line):
    line_out = [line[0]] + []
    for l in line[1:]:
        if l == '|':
            pass
        else:
            line_out.append(l.replace('|', ''))
            
    return line_out
In [6]:
hamlet_data = (raw_hamlet.map(lambda x: x.split('\t')) # split tab delimeter
                         .map(lambda line: get_line_id(line)) # get line numbers, convert to int
                         .map(lambda x: no_pipes(x)) # get rid of pipe characters
                         .map(lambda x: [l for l in x if l != '']).filter(lambda x: len(x)>1) # get rid of empty lines
                         .filter(lambda x: x[1][0] != '[') # get rid of stage directions
                         .filter(lambda x: x[0] >= 1014) # skip introduction text
              )

hamlet_ls = hamlet_data.collect()
In [7]:
hamlet_ls[:20]
Out[7]:
[[1014, 'ACT I'],
 [1023, 'SCENE I', 'Elsinore. A platform before the castle.'],
 [1122, 'BERNARDO', "Who's there?"],
 [1145, 'FRANCISCO', 'Nay, answer me: stand, and unfold yourself.'],
 [1200, 'BERNARDO', 'Long live the king!'],
 [1230, 'FRANCISCO', 'Bernardo?'],
 [1251, 'BERNARDO', 'He.'],
 [1265, 'FRANCISCO', 'You come most carefully upon your hour.'],
 [1316, 'BERNARDO', "'Tis now struck twelve; get thee to bed, Francisco."],
 [1378, 'FRANCISCO', "For this relief much thanks: 'tis bitter cold,"],
 [1435, 'And I am sick at heart.'],
 [1461, 'BERNARDO', 'Have you had quiet guard?'],
 [1497, 'FRANCISCO', 'Not a mouse stirring.'],
 [1530, 'BERNARDO', 'Well, good night.'],
 [1557, 'If you do meet Horatio and Marcellus,'],
 [1596, 'The rivals of my watch, bid them make haste.'],
 [1643, 'FRANCISCO', "I think I hear them. Stand, ho! Who's there?"],
 [1731, 'HORATIO', 'Friends to this ground.'],
 [1764, 'MARCELLUS', 'And liegemen to the Dane.'],
 [1801, 'FRANCISCO', 'Give you good night.']]
In [8]:
act_lines = [x for x in hamlet_ls if re.search(r'ACT [I]*V?[I]*', x[1])]
act_lines
Out[8]:
[[1014, 'ACT I'],
 [9154, 'ACT I'],
 [21496, 'ACT I'],
 [27792, 'ACT I'],
 [32223, 'ACT I'],
 [40963, 'ACT II'],
 [46656, 'ACT II'],
 [75016, 'ACT III'],
 [84102, 'ACT III'],
 [102901, 'ACT III'],
 [107559, 'ACT III'],
 [118014, 'ACT IV'],
 [120324, 'ACT IV'],
 [121780, 'ACT IV'],
 [125242, 'ACT IV'],
 [128383, 'ACT IV'],
 [138311, 'ACT IV'],
 [140005, 'ACT IV'],
 [149316, 'ACT V'],
 [163347, 'ACT V']]
In [9]:
acts_dict = {}
for act in act_lines:
    if act[1] in acts_dict:
        acts_dict[act[1]].append(act[0])
    else:
        acts_dict[act[1]] = [act[0]]
In [10]:
acts_dict
Out[10]:
{'ACT I': [1014, 9154, 21496, 27792, 32223],
 'ACT II': [40963, 46656],
 'ACT III': [75016, 84102, 102901, 107559],
 'ACT IV': [118014, 120324, 121780, 125242, 128383, 138311, 140005],
 'ACT V': [149316, 163347]}
In [11]:
for k in acts_dict.keys():
    acts_dict[k] = min(acts_dict[k])
In [12]:
acts_dict
Out[12]:
{'ACT I': 1014,
 'ACT II': 40963,
 'ACT III': 75016,
 'ACT IV': 118014,
 'ACT V': 149316}
In [13]:
def add_act(line):
    act = ''
    
    for k in acts_dict.keys():
        if line[0] >= acts_dict[k]:
            act = k
        
    out_line = [line[0], act] + line[1:]
    
    return out_line
In [14]:
hamlet_data = (hamlet_data.map(lambda x: add_act(x)) # add act value to each line
                          .filter(lambda x: not(re.search(r'ACT [I]*V?[I]', x[2]))) # no lines with act only
              )
                          
hamlet_data.take(10)
Out[14]:
[[1023, 'ACT I', 'SCENE I', 'Elsinore. A platform before the castle.'],
 [1122, 'ACT I', 'BERNARDO', "Who's there?"],
 [1145, 'ACT I', 'FRANCISCO', 'Nay, answer me: stand, and unfold yourself.'],
 [1200, 'ACT I', 'BERNARDO', 'Long live the king!'],
 [1230, 'ACT I', 'FRANCISCO', 'Bernardo?'],
 [1251, 'ACT I', 'BERNARDO', 'He.'],
 [1265, 'ACT I', 'FRANCISCO', 'You come most carefully upon your hour.'],
 [1316,
  'ACT I',
  'BERNARDO',
  "'Tis now struck twelve; get thee to bed, Francisco."],
 [1378,
  'ACT I',
  'FRANCISCO',
  "For this relief much thanks: 'tis bitter cold,"],
 [1435, 'ACT I', 'And I am sick at heart.']]
In [15]:
no_act_lines_ls = hamlet_data.collect()
In [16]:
scene_lines = [x for x in no_act_lines_ls if re.search(r'SCENE [I]*V?[I]*', x[2])]
In [17]:
scene_lines
Out[17]:
[[1023, 'ACT I', 'SCENE I', 'Elsinore. A platform before the castle.'],
 [9163, 'ACT I', 'SCENE II', 'A room of state in the castle.'],
 [21505, 'ACT I', 'SCENE III', "A room in Polonius' house."],
 [27801, 'ACT I', 'SCENE IV', 'The platform.'],
 [32232, 'ACT I', 'SCENE V', 'Another part of the platform.'],
 [40973, 'ACT II', 'SCENE I', "A room in POLONIUS' house."],
 [46666, 'ACT II', 'SCENE II', 'A room in the castle.'],
 [75027, 'ACT III', 'SCENE I', 'A room in the castle.'],
 [84113, 'ACT III', 'SCENE II', 'A hall in the castle.'],
 [102912, 'ACT III', 'SCENE III', 'A room in the castle.'],
 [107570, 'ACT III', 'SCENE IV', "The Queen's closet."],
 [118024, 'ACT IV', 'SCENE I', 'A room in the castle.'],
 [120334, 'ACT IV', 'SCENE II', 'Another room in the castle.'],
 [121790, 'ACT IV', 'SCENE III', 'Another room in the castle.'],
 [125252, 'ACT IV', 'SCENE IV', 'A plain in Denmark.'],
 [128392, 'ACT IV', 'SCENE V', 'Elsinore. A room in the castle.'],
 [138321, 'ACT IV', 'SCENE VI', 'Another room in the castle.'],
 [140014, 'ACT IV', 'SCENE VII', 'Another room in the castle.'],
 [149325, 'ACT V', 'SCENE I', 'A churchyard.'],
 [163356, 'ACT V', 'SCENE II', 'A hall in the castle.']]
In [18]:
scenes_dict = {}
for s in scene_lines:
    if s[1] in scenes_dict:
        scenes_dict[s[1]][s[2]] = s[0]
    else:
        scenes_dict[s[1]] = {s[2]: s[0]}

scenes_dict
    
Out[18]:
{'ACT I': {'SCENE I': 1023,
  'SCENE II': 9163,
  'SCENE III': 21505,
  'SCENE IV': 27801,
  'SCENE V': 32232},
 'ACT II': {'SCENE I': 40973, 'SCENE II': 46666},
 'ACT III': {'SCENE I': 75027,
  'SCENE II': 84113,
  'SCENE III': 102912,
  'SCENE IV': 107570},
 'ACT IV': {'SCENE I': 118024,
  'SCENE II': 120334,
  'SCENE III': 121790,
  'SCENE IV': 125252,
  'SCENE V': 128392,
  'SCENE VI': 138321,
  'SCENE VII': 140014},
 'ACT V': {'SCENE I': 149325, 'SCENE II': 163356}}
In [19]:
def add_scene(line):
    scene = ''
    
    for a in scenes_dict.keys():
        for s in scenes_dict[a].keys():
            if line[0] >= scenes_dict[a][s]:
                scene = s
                
    out_line = line[0:2] + [scene] + line[2:]
                
    return out_line
        
In [20]:
hamlet_data = (hamlet_data.map(lambda x: add_scene(x)) # add scene to each line
                          .filter(lambda x: not(re.search(r'SCENE [I]*V?[I]*', x[3]))) # no scene only lines
              )
In [21]:
hamlet_lol = hamlet_data.collect()
hamlet_lol = [x[:3]+['']+x[3:] if len(x) == 4 else x for x in hamlet_lol]
In [22]:
wrong_len = [x for x in hamlet_lol if len(x) != 5]
wrong_len
Out[22]:
[[37168, 'ACT I', 'SCENE V', 'MARCELLUS', '[Within]', 'Lord Hamlet,--'],
 [37203, 'ACT I', 'SCENE V', 'HORATIO', '[Within]', 'Heaven secure him!']]
In [23]:
hamlet_lol = [x[:4]+[x[5]] if x[4] == '[Within]' else x for x in hamlet_lol]
In [24]:
cols = ['line_no', 'act', 'scene', 'speaker', 'text']

df = pd.DataFrame(hamlet_lol, columns=cols)
In [25]:
df.head(20)
Out[25]:
line_no act scene speaker text
0 1122 ACT I SCENE I BERNARDO Who's there?
1 1145 ACT I SCENE I FRANCISCO Nay, answer me: stand, and unfold yourself.
2 1200 ACT I SCENE I BERNARDO Long live the king!
3 1230 ACT I SCENE I FRANCISCO Bernardo?
4 1251 ACT I SCENE I BERNARDO He.
5 1265 ACT I SCENE I FRANCISCO You come most carefully upon your hour.
6 1316 ACT I SCENE I BERNARDO 'Tis now struck twelve; get thee to bed, Franc...
7 1378 ACT I SCENE I FRANCISCO For this relief much thanks: 'tis bitter cold,
8 1435 ACT I SCENE I And I am sick at heart.
9 1461 ACT I SCENE I BERNARDO Have you had quiet guard?
10 1497 ACT I SCENE I FRANCISCO Not a mouse stirring.
11 1530 ACT I SCENE I BERNARDO Well, good night.
12 1557 ACT I SCENE I If you do meet Horatio and Marcellus,
13 1596 ACT I SCENE I The rivals of my watch, bid them make haste.
14 1643 ACT I SCENE I FRANCISCO I think I hear them. Stand, ho! Who's there?
15 1731 ACT I SCENE I HORATIO Friends to this ground.
16 1764 ACT I SCENE I MARCELLUS And liegemen to the Dane.
17 1801 ACT I SCENE I FRANCISCO Give you good night.
18 1833 ACT I SCENE I MARCELLUS O, farewell, honest soldier:
19 1872 ACT I SCENE I Who hath relieved you?
In [26]:
def fill_with_previous(ls):
    out = []
    for i in range(len(ls)):
        if ls[i] == '':
            out.append(out[i-1])
        else:
            out.append(ls[i])
            
    return out
In [27]:
names_ls = list(df['speaker'])
names_ls[:10]
Out[27]:
['BERNARDO',
 'FRANCISCO',
 'BERNARDO',
 'FRANCISCO',
 'BERNARDO',
 'FRANCISCO',
 'BERNARDO',
 'FRANCISCO',
 '',
 'BERNARDO']
In [28]:
names_ls = fill_with_previous(names_ls)
In [29]:
df['speaker'] = names_ls
In [30]:
df.head(20)
Out[30]:
line_no act scene speaker text
0 1122 ACT I SCENE I BERNARDO Who's there?
1 1145 ACT I SCENE I FRANCISCO Nay, answer me: stand, and unfold yourself.
2 1200 ACT I SCENE I BERNARDO Long live the king!
3 1230 ACT I SCENE I FRANCISCO Bernardo?
4 1251 ACT I SCENE I BERNARDO He.
5 1265 ACT I SCENE I FRANCISCO You come most carefully upon your hour.
6 1316 ACT I SCENE I BERNARDO 'Tis now struck twelve; get thee to bed, Franc...
7 1378 ACT I SCENE I FRANCISCO For this relief much thanks: 'tis bitter cold,
8 1435 ACT I SCENE I FRANCISCO And I am sick at heart.
9 1461 ACT I SCENE I BERNARDO Have you had quiet guard?
10 1497 ACT I SCENE I FRANCISCO Not a mouse stirring.
11 1530 ACT I SCENE I BERNARDO Well, good night.
12 1557 ACT I SCENE I BERNARDO If you do meet Horatio and Marcellus,
13 1596 ACT I SCENE I BERNARDO The rivals of my watch, bid them make haste.
14 1643 ACT I SCENE I FRANCISCO I think I hear them. Stand, ho! Who's there?
15 1731 ACT I SCENE I HORATIO Friends to this ground.
16 1764 ACT I SCENE I MARCELLUS And liegemen to the Dane.
17 1801 ACT I SCENE I FRANCISCO Give you good night.
18 1833 ACT I SCENE I MARCELLUS O, farewell, honest soldier:
19 1872 ACT I SCENE I MARCELLUS Who hath relieved you?
In [31]:
df['speaker'].unique()
Out[31]:
array(['BERNARDO', 'FRANCISCO', 'HORATIO', 'MARCELLUS', 'KING CLAUDIUS',
       'LAERTES', 'LORD POLONIUS', 'HAMLET', 'QUEEN GERTRUDE', 'All',
       'OPHELIA', 'Ghost', 'REYNALDO', 'ROSENCRANTZ', 'GUILDENSTERN',
       'VOLTIMAND', 'First Player', 'Prologue', 'Player King',
       'Player Queen', 'LUCIANUS', 'PRINCE FORTINBRAS', 'Captain',
       'Gentleman', 'Danes', 'Servant', 'First Sailor', 'Messenger',
       'First Clown', 'Second Clown', 'First Priest', 'OSRIC', 'Lord',
       'First Ambassador'], dtype=object)
In [32]:
prologue = df.loc[df['speaker']=='Prologue', :]
prologue
Out[32]:
line_no act scene speaker text
2054 91871 ACT III SCENE II Prologue For us, and for our tragedy,
2055 91914 ACT III SCENE II Prologue Here stooping to your clemency,
2056 91947 ACT III SCENE II Prologue We beg your hearing patiently.
In [33]:
df = df.loc[df['speaker']!='Prologue', :]
In [34]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4085 entries, 0 to 4087
Data columns (total 5 columns):
line_no    4085 non-null int64
act        4085 non-null object
scene      4085 non-null object
speaker    4085 non-null object
text       4085 non-null object
dtypes: int64(1), object(4)
memory usage: 191.5+ KB

NLP Pre-Processing

In [35]:
df.text[:10]
Out[35]:
0                                         Who's there?
1          Nay, answer me: stand, and unfold yourself.
2                                  Long live the king!
3                                            Bernardo?
4                                                  He.
5              You come most carefully upon your hour.
6    'Tis now struck twelve; get thee to bed, Franc...
7       For this relief much thanks: 'tis bitter cold,
8                              And I am sick at heart.
9                            Have you had quiet guard?
Name: text, dtype: object
In [36]:
df['q_marks'] = df['text'].str.count('\?')
df['ex_marks'] = df['text'].str.count('\!')
In [37]:
df['words_only'] = df['text'].str.replace(r'\W+', ' ')
In [38]:
df.words_only
Out[38]:
0                                            Who s there 
1                Nay answer me stand and unfold yourself 
2                                     Long live the king 
3                                               Bernardo 
4                                                     He 
                              ...                        
4083                                Speak loudly for him 
4084              Take up the bodies such a sight as this
4085         Becomes the field but here shows much amiss 
4086                           Go bid the soldiers shoot 
4087    bodies after which a peal of ordnance is shot ...
Name: words_only, Length: 4085, dtype: object
In [39]:
def compose(*functions):
    return functools.reduce(lambda f, g: lambda x: g(f(x)), functions, lambda x: x)

def get_tokens(line):
    return nltk.word_tokenize(line)

def get_wordnet_pos(word):
    pos_dict = {"J": wordnet.ADJ,
                "N": wordnet.NOUN,
                "V": wordnet.VERB,
                "R": wordnet.ADV}
    tag = nltk.pos_tag([word])[0][1][0]
    
    return pos_dict.get(tag, wordnet.NOUN)

def lemma_gen(lemmatizer, token_ls):
    for word in token_ls:
        yield lemmatizer().lemmatize(word, get_wordnet_pos(word))
        
lemma_gen = partial(lemma_gen, WordNetLemmatizer)

def extract_lem(lem_gen):
    return [l for l in lem_gen if l != 's']

def no_stopwords(ls):
    return ' '.join([w.lower() for w in ls if w.lower() not in stopwords.words('english')])

pipeline = compose(get_tokens, lemma_gen, extract_lem, no_stopwords)
In [40]:
lems = pipeline('I have seen you at the store.')
In [41]:
lems
Out[41]:
'see store .'
In [42]:
df['lemmatized'] = df['words_only'].apply(pipeline)
In [43]:
df.head(20)
Out[43]:
line_no act scene speaker text q_marks ex_marks words_only lemmatized
0 1122 ACT I SCENE I BERNARDO Who's there? 1 0 Who s there
1 1145 ACT I SCENE I FRANCISCO Nay, answer me: stand, and unfold yourself. 0 0 Nay answer me stand and unfold yourself nay answer stand unfold
2 1200 ACT I SCENE I BERNARDO Long live the king! 0 1 Long live the king long live king
3 1230 ACT I SCENE I FRANCISCO Bernardo? 1 0 Bernardo bernardo
4 1251 ACT I SCENE I BERNARDO He. 0 0 He
5 1265 ACT I SCENE I FRANCISCO You come most carefully upon your hour. 0 0 You come most carefully upon your hour come carefully upon hour
6 1316 ACT I SCENE I BERNARDO 'Tis now struck twelve; get thee to bed, Franc... 0 0 Tis now struck twelve get thee to bed Francisco tis struck twelve get thee bed francisco
7 1378 ACT I SCENE I FRANCISCO For this relief much thanks: 'tis bitter cold, 0 0 For this relief much thanks tis bitter cold relief much thanks ti bitter cold
8 1435 ACT I SCENE I FRANCISCO And I am sick at heart. 0 0 And I am sick at heart sick heart
9 1461 ACT I SCENE I BERNARDO Have you had quiet guard? 1 0 Have you had quiet guard quiet guard
10 1497 ACT I SCENE I FRANCISCO Not a mouse stirring. 0 0 Not a mouse stirring mouse stir
11 1530 ACT I SCENE I BERNARDO Well, good night. 0 0 Well good night well good night
12 1557 ACT I SCENE I BERNARDO If you do meet Horatio and Marcellus, 0 0 If you do meet Horatio and Marcellus meet horatio marcellus
13 1596 ACT I SCENE I BERNARDO The rivals of my watch, bid them make haste. 0 0 The rivals of my watch bid them make haste rival watch bid make haste
14 1643 ACT I SCENE I FRANCISCO I think I hear them. Stand, ho! Who's there? 1 1 I think I hear them Stand ho Who s there think hear stand ho
15 1731 ACT I SCENE I HORATIO Friends to this ground. 0 0 Friends to this ground friends ground
16 1764 ACT I SCENE I MARCELLUS And liegemen to the Dane. 0 0 And liegemen to the Dane liegeman dane
17 1801 ACT I SCENE I FRANCISCO Give you good night. 0 0 Give you good night give good night
18 1833 ACT I SCENE I MARCELLUS O, farewell, honest soldier: 0 0 O farewell honest soldier farewell honest soldier
19 1872 ACT I SCENE I MARCELLUS Who hath relieved you? 1 0 Who hath relieved you hath relieve
In [44]:
df = df.loc[df['lemmatized'].str.len() > 0]

df.head()
Out[44]:
line_no act scene speaker text q_marks ex_marks words_only lemmatized
1 1145 ACT I SCENE I FRANCISCO Nay, answer me: stand, and unfold yourself. 0 0 Nay answer me stand and unfold yourself nay answer stand unfold
2 1200 ACT I SCENE I BERNARDO Long live the king! 0 1 Long live the king long live king
3 1230 ACT I SCENE I FRANCISCO Bernardo? 1 0 Bernardo bernardo
5 1265 ACT I SCENE I FRANCISCO You come most carefully upon your hour. 0 0 You come most carefully upon your hour come carefully upon hour
6 1316 ACT I SCENE I BERNARDO 'Tis now struck twelve; get thee to bed, Franc... 0 0 Tis now struck twelve get thee to bed Francisco tis struck twelve get thee bed francisco
In [45]:
vectorizer = TfidfVectorizer()
vectorized = vectorizer.fit_transform(df['lemmatized'])
In [46]:
X_train = pd.DataFrame.sparse.from_spmatrix(vectorized)
In [47]:
col_map = {v:k for k,v in vectorizer.vocabulary_.items()}

for col in X_train.columns:
    X_train.rename(columns={col: col_map[col]}, inplace=True)
In [48]:
X_train.head()
Out[48]:
abate abatement abhor ability able aboard abominably abridgement abroad absent ... yesty yet yield yon yond yonder yorick young youth zone
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 rows × 3768 columns

In [50]:
len(X_train)
Out[50]:
4053
In [ ]: